Silvopasture

Joseph Orefice, PhD

North Branch Farm, Saranac, NY Uihlein Forest Director, Cornell University

September 29, 2017

TABLE 1: Reasons for, and challenges of, silvopasture utilization by 20 farmers practicing silvopasture in New York and New England. Farmers practicing silvopasture were purposefully identified and interviewed. Farmer may have provided more than one reason for or challenge of silvopasture utilization.

Reasons for silvopasture utilization	Number of Farmers
Shade for livestock	16
Expanding pasture acreage and diversity	14
Increased utilization of existing farm woodland	12
Increased forage availability during mid-summer and droughts	12
Diversified livestock diet	8
Overall animal welfare	6
Management of undesired vegetation	5
Winter shelter for livestock	4
Tree health/fertilization	3
Increased farm aesthetics	2
Challenges of silvopasture utilization	
Fencing establishment and maintenance	9
Lack of knowledge toward silvopasture management	6
Lack of time for silvopasture management	5
Unknown forage quality and management techniques	5
Reduced mobility of machinery	3
Support from agricultural extension organizations	3
Undesirable vegetation	2
Fleece contamination in fiber animals	1
Epicormic branching on trees	1
Monitoring livestock	1

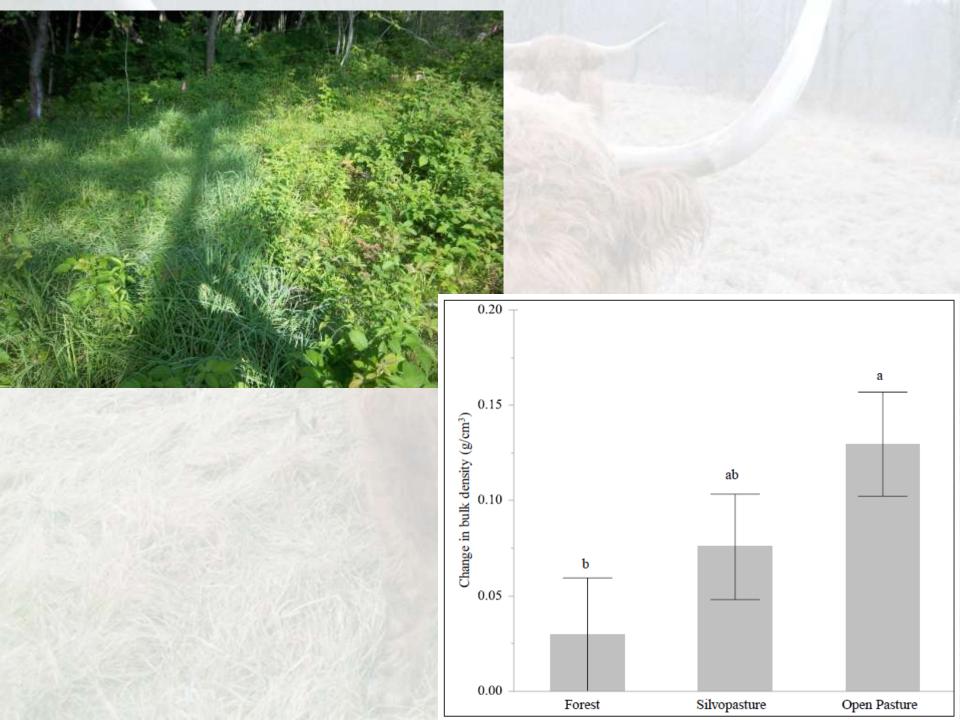
Orefice, J., Carroll, J., Conroy, D., and L. Ketner. (2017). Silvopasture practices and perspectives in the northeastern united states. Agroforestry Systems 91: 146-160

Forage establishment, timing is important

What are you starting with?

treeresource.com

Pennsylvania Department of Conservation and Natural Resources - Forestyr Archives, Pennsylvania Department of Conservation and Natural Resources, www.forestryimages.org


Forest Conversion – Manage Competition!

Prior to forest conversion, ask:

What and how much can my current livestock control?

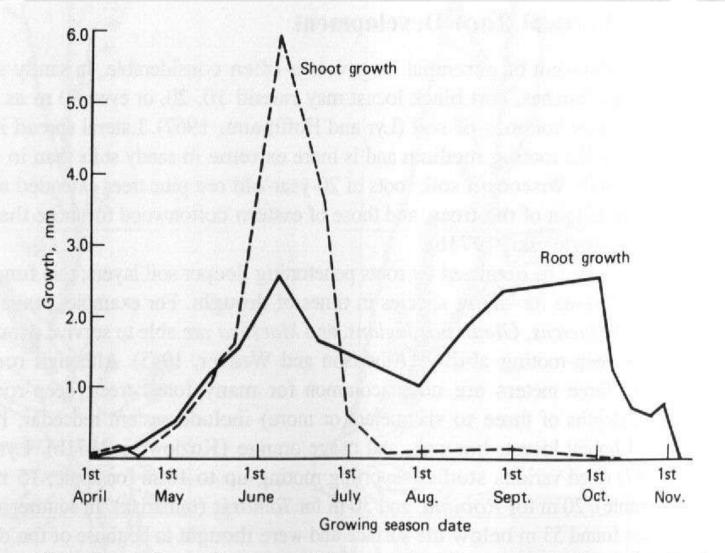


Figure 6.8. Comparison of average daily extension for shoots and growing roots. Root and shoot growth follow distinct but different seasonal patterns. The growth rate of roots declines in mid-summer and ceases in winter. (Modified from Stevens, 1931.)

Barnes 2004

... animals can damage trees and GRASS

Site preparation or Soil Degradation?

Forage Selection and Seasonality

1994 and 1995 summer-fall growing	season at New Fran	klin, Missouri (92	2°46′ W; 39°01′ N).
Species	Full sun (g)	50% shade (g)	80% shade (g)
Introduced cool-season grasses			18
Kentucky bluegrass	12.45a	12.30a	8.06b
Orchardgrass 'Benchmark'	13.83a	11.73a	6.36b
Orchardgrass 'Justus'	11.71a	11.16a	9.53a
Ryegrass 'Manhattan II'	12.69a	11.10ab	8.596
Smooth bromegrass	9.61b	11.95a	9.54b
Tall Fescue 'KY31'	13.28a	16.24a	7.96b
Tall Fescue 'Martin'	12.36a	11.79a	6.09b
Timothy	10.23a	8.97a	5.49b
Introduced warm-season grasses			
Bermudagrass	56.05a	37.04b	8.59c
Native warm-season grasses			
Big bluestem	45.27a	33.41b	17.76c
Buffalograss	29.86a	13.67b	6.12b
Indiangrass	42.34a	30.72b	16.86c
Switchgrass	79.46a	57.59b	26.47c
Introduced cool-season legumes			
Alfalfa 'Cody'	6.21a	5.31ab	3.76Ь
Alfalfa 'Vernal'	9.44a	7.13b	4.23c
Alsike clover	17.02a	9.78b	5.43c
Berseem clover	15.99a	6.95b	2.88c
Birdfoot trefoil hybrid Rhizomatous	15.01a	9.83b	5.28c
Birdsfoot Trefoil 'Nocern'	19.61a	12.65b	5.96c
White clover	15.98a	13.02a	9.45b
Red clover	19.88a	12.08b	Lin et ab1999, Agro

Table 2. Total above ground dry weight of 27 forages under three levels of shade during the 1994 and 1995 summer-fall growing season at New Franklin, Missouri (92°46' W; 39°01' N).

Lin et ab1999, Agroforestry Systems

On-farm Research: Investigate the system productivity, environmental effects, and economics of forest conversion into silvopasture, open pasture, and managed woodlot.

Northern Hardwood Forest Conversion to Silvopasture, Open Pasture, and Woodlot

Will It Pay?

 Net Present Value(NPV) is a calculation used to determine the present value of an investment by the discounted sum of all cash flows received from the project.

NPV = initial investment + sum of discounted future cash flows (positive and negative)

www.financeformulas.net

Example: black locust silvopasture (25 years @ 5% i)

- <u>\$/Acre Year Activity</u>
- \$1000 0 Establishment cost (~ 1000 trees/ac)
- -\$100 1 maintenance, replant
- -\$50
 2 maintenance
- \$625 15 thinning for posts (net revenue)
- \$1250 20 thinning for posts (net)
- \$5000 25 final harvest for posts (net)

NPV = - 1000 + - 95 + - 45 + 301 + 471 + 1477 = \$1108 No replanting cost (coppice and suckering)

Table 5: Forage cost/revenues per hectare in 2012 NPV for six forage treatments in open pastures and silvopastures converted from forests in 2012, assuming a discount rate of 3%.

Market Contraction	Seed cost	Seeding labor	Total forage	Total forage	
Forage Treatment	2012	2012	production 2013	production 2014	Total NPV
Bluegrass/Clover	\$165.56	\$12.36	\$43.85	\$71.51	-\$62.56
Brome/Clover	\$205.10	\$12.36	\$62.97	\$88.60	-\$65.89
Hay	\$98.84	\$0.00	\$41.34	\$93.96	\$36.46
None	\$0.00	\$0.00	\$3.86	\$50.63	\$54.49
Orchardgrass/Clover	\$154.69	\$12.36	\$122.28	\$117.66	\$72.90
Ryegrass/Clover	\$133.93	\$12.36	\$67.17	\$73.69	-\$5.42

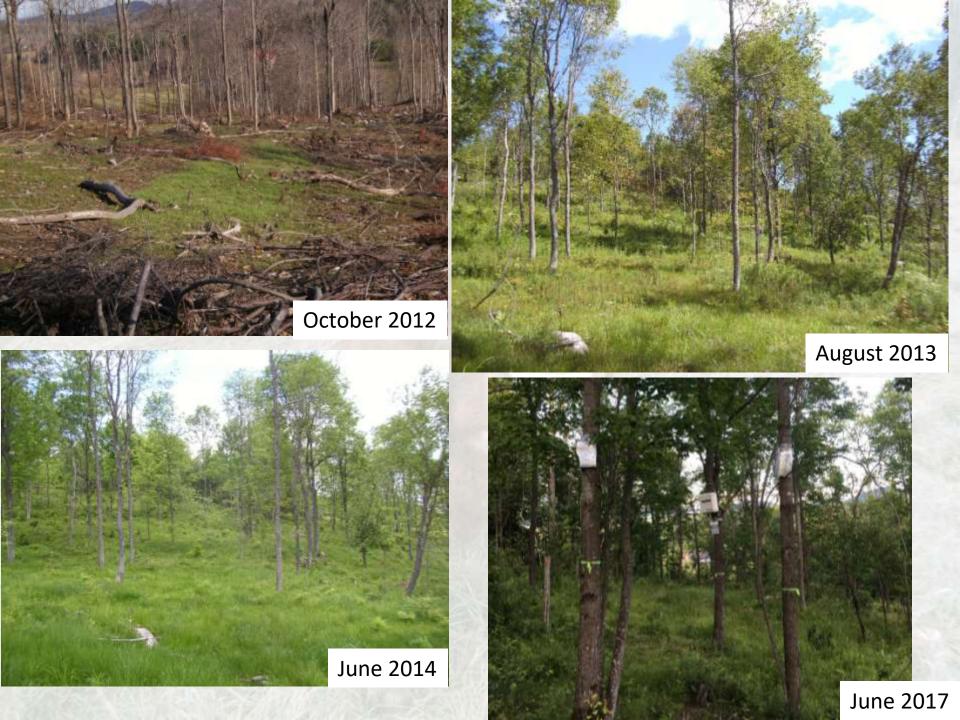

- indicates negative values

Table 7: Internal rate of return (IRR) and net present value (NPV) per hectare at multiple discount rates, with and without initial timber harvesting costs, for four land management options. Silvopasture consistently yielded the highest NPV of all options due to annual and long-term sources of revenue. 'No management 'was financially competitive with silvopasture when initial timber harvesting costs were incurred.

Treatment	IRR		2	
		3%	4%	5%
Open Pasture	2.6%	-\$77	-\$231	-\$356
Silvopasture	6.4%	\$1,277	\$773	\$391
Woodlot	1.2%	-\$662	-\$883	-\$1,033
No Management	6.9%	\$1,003	\$607	\$327

		NPV/hectare		
Treatment	IRR	3%	4%	5%
Open Pasture	18.2%	\$951	\$787	\$653
Silvopasture	19.2%	\$2,306	\$1,987	\$1,552
Woodlot	4.8%	\$366	\$135	-\$24
No Management	6.9%	\$1,003	\$607	\$327

- indicate negative values

North Branch Farm www.adkfigs.com

jno37@cornell.edu

Orefice, J., Carroll, J., Conroy, D., and L. Ketner. (2017). Silvopasture practices and perspectives in the northeastern united states. Agroforestry Systems 91: 149-160.

Orefice, J., Carroll, J., and L. Ketner. (2016). Photo Guide to Northeastern United States Silvopasture. Available online.

Orefice, J. and J. Carroll. (2016). Silvopasture, it's not a load of manure: differentiating between silvopasture and wooded livestock paddocks in the northeastern United States. Journal of Forestry. In Press.